Three-dimensional nanotubes composed of carbon-anchored ultrathin MoS2 nanosheets with enhanced lithium storage.
نویسندگان
چکیده
MoS2 nanotubes (denoted as MoS2 NTs) assembled from well-aligned amorphous carbon-modified ultrathin MoS2 nanosheets (denoted as MoS2 NT@C) were successfully fabricated via a facile solvothermal method combined with subsequent annealing treatment. With the assistance of octylamine as a solvent and carbon source, interconnected MoS2 nanosheets (denoted as MoS2 NSs) can assemble into hierarchical MoS2 NTs. Such a hybrid nanostructure can effectively facilitate charge transport and accommodate volume variation upon prolonged charge/discharge cycling for reversible lithium storage. As a result, the MoS2 NT@C composite manifests a very stable high reversible capacity of around 1351 mA h g(-1) at a current density of 100 mA g(-1); even after 150 cycles, the electrode reaches a capacity of 1106 mA h g(-1) and it retains a reversible capacity of 650 mA h g(-1) after the 10th cycle at a current density of 3 A g(-1), all of which indicate that the MoS2 NT@C nanocomposite is a promising negative electrode material for high-energy lithium ion batteries.
منابع مشابه
Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries
Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarc...
متن کاملFacile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties.
Hierarchical networks with highly interconnected V2O5 nanosheets (NSs) anchored on skeletons of carbon nanotubes (CNTs) are prepared by a facile hydrothermal treatment and a following calcination for the first time. Benefiting from these unique structural features, the as-prepared CNT@V2O5 material shows dramatically excellent electrochemical performance with remarkable long cyclability (137-11...
متن کاملFabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.
MoS2 nanosheet@TiO2 nanotube hybrid nanostructures were successfully prepared by a facile two-step method: prefabrication of porous TiO2 nanotubes based on a sol-gel method template against polymeric nanotubes, and then assembly of MoS2 nanoclusters that consist of ultrathin nanosheets through a solvothermal process. These hybrid nanostructures were characterized by scanning electron microscopy...
متن کاملThree-dimensionalization of ultrathin nanosheets in a two-dimensional nano-reactor: macroporous CuO microstructures with enhanced cycling performance.
Three-dimensional (3D) macroporous CuO structures composed of ultrathin nanosheets were successfully synthesized by employing a liquid-liquid interface as a two-dimensional (2D) nano-reactor. The macroporous structure helped CuO to retain the exposed surface during reactions, thus significantly enhancing the long term cycling performance both in photocatalysis and lithium ion batteries.
متن کاملUltrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries.
In this work, we report on a simple and scalable process to synthesize the core-shell nanostructure of MoS2@N-doped carbon nanosheets (MoS2@C), in which polydopamine is coated on the MoS2 surface and is then carbonized. An intensive investigation using transmission electron microscopy and Raman spectroscopy reveals that the as-synthesized MoS2@C possesses a nanoscopic and ultrathin layer of MoS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 29 شماره
صفحات -
تاریخ انتشار 2016